Storing and Analyzing Bibliographic Metadata with ElasticSearch

Clemens Düpmeier, Christian Schmitt (KIT / IAI)
Overview

- Search based web applications and the openTA project
- A short overview on ElasticSearch and its features
- Storing and analyzing bibliographic metadata
- Summary and outlook
Modern web user interfaces

- The design principles of web user interfaces have changed

- Instead of complex forms and static hierarchical navigation => responsive and natural language based interfaces

- Search engine technology can support these types of user interfaces well
Search based web applications

- Use search engine technology as key element for data access

- Available data is a mixture of
 - unstructured
 - semi-structured
 - structured

 information coming from different sources

- Use semantic technologies for
 - aggregation,
 - normalization and
 - classification of data

- And a natural language approach for data access

Search based environmental information portal
The openTA portal is search based too
The openTA portal

- DfG project with partners (IAI, ITAS, KIT library) from KIT

- Web portal for the Network Technology Assessment (NTA)
 - Aggregates and provides information about
 - members, organizations
 - news and events
 - scientific publications
 - Provides services and web technology (widgets) to use the aggregated information remotely

Homepage of openTA with aggregated news feed and calendar
Search driven architecture of openTA

Most information will be ingested using service interfaces and crawling.
What kind of search technology?

- Well known open source products are: Solr, ElasticSearch
 - Both are based on Apache Lucene

- They both provide
 - Document oriented, structured search indices
 - Scalable architecture by distributing and processing index entries on multiple servers ("Sharding")
 - Advanced features for data aggregation, analysis and retrieval

- The openTA project uses ElasticSearch
 - Newer and better architecture (compared to Solr)
 - Completely REST and JSON format based
 - Supports hierarchical document structures and parent / child relationships
 - Supports queries against multiple indices at once
 - And other interesting features explained on the next slides
Some elements of the search language (Lucine based)

Terms	apple
	apple iphone
Phrases	"apple iphone"
Proximity	"apple safari"~5
Fuzzy	apple~0.8
Wildcards	app*
	pp
Boosting	apple^10 safari
Range	[2011/05/01 TO 2011/05/31]
	[java TO json]
Boolean	apple AND NOT iphone
	+apple -iphone
	(apple OR iphone) AND NOT review
Fields	title:iphone^15 OR body:iphone
	published_on:[2011/05/01 TO "2011/05/27 10:00:00"]
Indexing data with ElasticSearch

- Send JSON documents to server, e.g. use REST API
 - No schema necessary => ElasticSearch determines type of attributes
 - But’s possible to explicitly specify types for attributes
 - Like string, byte, short, integer, long, float, double, boolean, date

- Analysis of (text) attributes
 - Word extraction, reduction of words to their base form (stemming)
 - Stop words
 - Support for multiple languages
 - Can be extended via plugins for quite complex analysis
 - Entity recognition
 - De-duplication

- Generate identifier for data sets; duplicate recognition
Query Possibilities

- Combined search on different attributes and different indices
 - Many possibilities for full-text search on attribute values
 - Exact, non-exact, proximity (phrases), partial match
 - Support well-known logical operators (And / or, …)
 - Range queries (i.e. date ranges)
 - …

- Control relevance and ranking of search results, sort them
 - Boost relevance while indexing
 - Boost or ignore relevance while querying
 - Different possibilities to sort search results otherwise
More advanced features

- Multi-tenant
- Spatial data queries
- Search suggestions
- Real time aggregation of search data
 - Statistical calculations (sums, mean value, max, min, …)
 - Faceting
 - By using terms
 - Statistical calculations
 - Classification (Grouping by using ranges)
 - Filter rules
 - By geographical distance
- Percolators
- Warm up of indices
Importing bibliographic data in ElasticSearch

- Readers transform source format to record-oriented Metamorph format (in Java)
- Metafacture / Metamorph is a rule based transformation engine for bibliographic data (open source as part of the CultureGraph platform, DNB)
- Transformation rules applied by Metamorph transform data into internal objects, which are then serialized to JSON
- EL-Search Writer stores the JSON objects in ElasticSearch
Some features of Metamorph

- Change grouping of attributes, change name of attribute
- Split / join attributes
- Substring and pattern extraction
- Transformation between data types
- Map values to other values using lookup tables
- Build records from attributes, convert data records in attributes
- Supports recursion and conditions in transformation rules
- Allows to plugin your own code at different places of the transformation
Example of Metamorph transformation rules

```xml
<?xml version="1.0" encoding="UTF-8"?>
<metamorph>
  <!-- Transformation rules -->
  <rules>
    <data name="foreignId" source="_id" />

    <data name="authors" source="author">
      <split delimiter="||" />
      <trim />
    </data>

    <data name="titles" source="title" />

    <data name="pubYear" source="year" />

    <data name="pubType" source="_type">
      <case to="lower" />
      <lookup in="pubtypes" />
    </data>

    <data name="contributorId" source="_contributor" />
  </rules>
</metamorph>
```
Role of ElasticSearch

- While storing
 - Generate unique identifier and keys to find duplicates
 - Group documents which seem to describe same entities
 - Further analysis of attributes (especially attributes containing text)
 - Entity recognition
 - Keyword extraction / Classification

- Querying in realtime
 - Search across multiple fields, calculate ranking
 - Hits in different fields can be given different ranking factors (i.e. finding an author name in the author field)
 - Or matching the publication date
 - Aggregation of data; calculations for faceted search
 - Publication year
 - Top 10 authors (with most publications)
 - Type of publication
Prototype: Search with „Energie – Rohracher“

Die openTA-Publikationsdienste führen die Publikationen der NTA-Mitgliedsinstitutionen in einer Datenbank zusammen und bieten auf dieser Basis Nutzungsdiene an, wie z.B. einen TA-Neuerscheinungsdienst. Über den NTA-Fundus hinaus werden auch weitere Quellen für die Datenakquise einbezogen, um ein vollständigeres Bild der aktuellen TA-Literatur zu erhalten.

Hinweis: Der Publikationsdienst befindet sich gegenwärtig (im Juni 2014) in einer sehr frühen Entwicklungsphase, und dies ist eine allererste Version des Publikationsdienstes, die zu Demonstrationszwecken dient. Inhalte und Funktionalität sind daher noch nicht so ausgeprägt, dass sie eine sinnvolle Nutzung erlauben würden.

<table>
<thead>
<tr>
<th>Treffer sortieren nach</th>
<th>Jahr</th>
<th>Autor</th>
<th>Aufsteigend</th>
<th>Absteigend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Energiesystemanalyse im KIT-Zentrum Energie</td>
<td>Gruwald, A.</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Energiesystemanalyse, Tagungsband des Workshops Energiesystemanalyse vom 27. November 2008 am KIT Zentrum Energie</td>
<td>Möst, D.</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Future Search & Assessment "Energie und EndverbraucherInnen"</td>
<td>Nentwich, M.</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BürgerInnen erarbeiten Empfehlungen zum Thema "Energie und EndverbraucherInnen"</td>
<td>Bechtold, U., Nentwich, M.</td>
<td>2007</td>
<td></td>
</tr>
</tbody>
</table>
Summary and outlook

- The search based architecture of openTA works really well
- First prototype of publication service looks promising too
 - Implemented import pipeline and usage of Metamorph allows for a modular extension to support more formats
 - ElasticSearch already showed its great potential but only the basic functionality is used at the moment
- Publication service will be continually enhanced
 - New sources and formats will be added
 - More facets and filter functionality will be implemented in the UI
 - Explore more advanced features and extensions of ElasticSearch to solve some challenges
openTA website

http://www.openta.net
Metamorph: Map Publication Types

<!-- Data maps -->
<maps>

<map name="pubtypes">
 <entry name="article" value="PERIODICAL_ARTICLE" />
 <entry name="book" value="MONOGRAPH" />
 <entry name="booklet" value="MISC" />
 <entry name="conference" value="MISC" />
 <entry name="inbook" value="COLLECTIVE_VOLUME_ARTICLE" />
 <entry name="incollection" value="COLLECTIVE_VOLUME_ARTICLE" />
 <entry name="inproceedings" value="COLLECTIVE_VOLUME_ARTICLE" />
 <entry name="manual" value="REPORT" />
 <entry name="mastersthesis" value="MISC" />
 <entry name="misc" value="MISC" />
 <entry name="phdthesis" value="MISC" />
 <entry name="proceedings" value="COLLECTIVE_VOLUME" />
 <entry name="techreport" value="REPORT" />
 <entry name="unpublished" value="MISC" />
</map>

</maps>

Metamorph allows to transform values by map lookup
BibTex -> JSON Mapping

- Text based format -> Object based format
- Split and rename fields
- Normalization of data type notions (e.g. date)
BibTex Format

@article{ITAS-ID5582,
author = "Nentwich, M. | Riehm, U. ",
title = "Internationale Fachportale für Technikfolgenabschätzung. Brauchen wir eines oder sogar mehrere?",
journal = "Technikfolgenabschätzung - Theorie und Praxis",
year = "2012",
pages = "76-80",
volume = "21",
number = "3",
evastar_pdf = "neri12a.pdf",
ISSN = "16197623",
note = "language = de"
}

- Text based format consisting of several text lines wrapped in @{article}{} construct
Example of metadata as JSON

```json
{
    "id": "47e26700-90ab-38fb-9fb0-5b72fad74610",
    "foreignId": "ITAS-ID5582",
    "authors": [
        "Nentwich, M.",
        "Riehm, U."
    ],
    "editors": null,
    "pubType": "PERIODICAL_ARTICLE",
    "titles": [
        "Internationale Fachportale für Technikfolgenabschätzung. Brauchen wir eines oder sogar mehrere?"
    ],
    "pubYear": 2012,
    "contributorId": 12481,
    "contentType": "UNKNOWN",
    "mediaType": "UNKNOWN",
    "fullTextReference": "http:\/\/www.itas.kit.edu\/pub\/v\/2012\/neril2a.pdf",
    "valid": true,
    "created": "2014-05-28T16:23:14+0200",
    "lastModification": "2014-05-28T16:23:14+0200"
}
```

Text version of JSON format used by openTA